
BILKENT UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Committee Meeting IV Report

Project Name

Sensör Füzyonu ile Navigasyon, Sahne Eşleştirme ile Hedef
Tespiti Yapabilen Otonom Sistem

Group Members

Su Direkci, Yiğit Efe Erginbaş, Yusuf Umut Çiftci
Cafer Mertcan Akçay, İrem Kaftan, Özgür Bora Gevrek

(Group B5)

Academic Mentor Company Mentors

Prof. Dr. Levent Onural Adil Can Dai
Erkan Milli

Course Coordinator Sertaç Erdemir

Mehmet Alper Kutay

Teaching Assistant Date

Aslı Alpman May 20, 2021

1

Project Summary

With the increasing advantages of autonomous vehicles in warfare, stakeholders of
the defense industry such as Roketsan are exploring the future territory with various
research and development projects. Accordingly, our project aims to construct an au-
tonomous system that can navigate an unknown location and locate a predetermined
target. For this purpose, we use a stereo camera, a LIDAR, and an INS. By analyzing the
data stream obtained from these sensors, the robot decides its next maneuver and maps
its surroundings. To achieve this, we have defined and achieved numerous work tasks,
such as temporal and spatial calibration between the sensors, SLAM (Simultaneous Lo-
calization and Mapping), segmentation, scene matching, target detection, building the
robot, and motion planning. We assigned these tasks to different group members and
have achieved all of the milestones that we had determined. We have implemented the
algorithms in ROS using C++, optimized the motion planning algorithms, achieved
localization and mapping, constructed the robot and handled the communication be-
tween different computing units. In the end, we are able satisfy our criterion for suc-
cess which is to build a robot that explores its environment autonomously and locates
a predetermined target. We have tested our robot in a large-scale maze that we have
constructed. The results show that the robot is able to explore and map the maze while
localizing itself over this map. Furthermore, when it comes across the predetermined
target in the maze, it is able to detect the target and mark it using a laser pointer.

Table of Contents 2

Table of Contents

1 Company Information 6

2 Motivation and Novelty 6

3 Requirements 7

3.1 Functional Requirements . 7

3.2 Non-Functional Requirements/Constraints 9

4 Big Picture 9

5 Methods and Implementation Details 11

5.1 Work Breakdown Structure and Project Plan 11

5.2 Methods and Progress . 15

5.2.1 Current State . 15

5.2.2 Data Acquisition from INS . 16

5.2.3 Data Acquisition from Stereo Camera and Its Calibration with INS . . 17

5.2.4 Data Acquisition from LIDAR and Its Calibration with Stereo Camera 21

5.2.5 Point Cloud Fusion (PCF) . 24

5.2.6 Segmentation . 26

5.2.7 Odometry . 28

5.2.8 Simultaneous Localization and Mapping (SLAM) 29

5.2.9 Scene Matching . 30

5.2.10 Building and Remote Controlling the Robot 32

5.2.11 Path Planning and Exploration . 35

5.2.12 Target Detection and Laser Pointing 38

5.2.13 Possible Risks and Solutions . 39

6 Results, Discussions, and Further Directions 40

6.1 Results . 40

6.2 Discussions . 42

Table of Contents 3

6.3 Future Directions . 42

7 Detailed Equipment List 43

Appendices 46

List of Figures 4

List of Figures

1 The block diagram of the project. 10

2 The work breakdown structure of the project. 13

3 The milestones of the project. 14

4 The timeline of the project. 15

5 The current state of the project. 16

6 INS data obtained from the sensor . 17

7 Images obtained from the left and right eyes of the stereo camera. [8] . . . 18

8 The Aprilgrid calibration target. [10] . 20

9 Point cloud data obtained from the stereo camera. 20

10 The locations of the right and left eye of the stereo camera. 21

11 Calibration results. 21

12 Point cloud data from the LIDAR. 23

13 Setting for spatial calibration of stereo camera and LIDAR. 23

14 Points detected on the edges of the cardboard. 24

15 Two different point cloud data, calibrated [13] 24

16 Calibrated point clouds of stereo camera and LIDAR. 25

17 Initial trials for automatic delineation of the EEE 493 lab indoor scene. . . . 27

18 A representative image from our segmentation model. 27

19 Spatial mapping results. 29

20 An example laser scan on top of a map. 30

21 Scene matching results. 31

22 Scene matching results. 31

23 Sketches of robot design. 33

24 Final design of chassis parts. 34

25 Final look of the robot with all components attached. 34

26 The exponential decay of the cost from an occupied state to a free state, and
the corresponding inflation radius. 36

27 An example global costmap. Dark regions correspond to cells with a high cost. 38

List of Figures 5

28 Two-axis pan-tilt laser mount. 39

29 The map of the constructed maze. 41

30 An illustration of the robot pointing the target with a laser. 41

1 The block diagram of the project. 46

2 The timeline of the project. 47

3 The current state of the project. 48

2 Motivation and Novelty 6

1 Company Information

Roketsan was founded on 14 June 1988 by the Defense Industries Executive Committee.
Today, Roketsan develops and manufactures various types of rockets, missiles, guidance-
control systems, fuzes, warheads, mechanical parts, algorithms, and software, and gives
logistical support for these systems vehicles. Its head office is located in Kemalpaşa district,
Elmadağ, Ankara, Turkey.

2 Motivation and Novelty

The importance of autonomous vehicles in the military setting is increasing all around the
world. Such vehicles provide numerous advantages in warfare, such as detecting threats in
a hostile area, performing target acquisition with greater accuracy compared to humans,
and mapping areas that are potentially dangerous for troops [1]. For this reason, defense
companies are competing to develop autonomous robots equipped with cutting edge tech-
nology. In this context, Roketsan is exploring the future territory on autonomous vehicles,
and this project can shed some light in this direction. Our project is a proof of concept
for a vehicle capable of navigating its environment, locating and shooting its target au-
tonomously. The company does not plan to use the results of this project immediately. This
project can become an asset for the company in the autonomous vehicle territory, provide
experience, and demonstrate capability in the field. In the future, Roketsan can utilize
some of the knowledge gathered from this project for their decisions in their future plans
for autonomous agents.

The project is not as specialized as to suggest a patent application. There are many
patents related to autonomous cars from car and car parts manufacturers. An example is
US6151539A [2], a patent owned by Volkswagen named “An autonomous vehicle arrange-
ment and method for controlling an autonomous vehicle”, which describes an autonomous
vehicle arrangement composed of several subsystems, sensors, and arrangements. A patent
more similar to our project is US7840352B2 from Honeywell International Inc. demonstrat-
ing an autonomous vehicle system with Global Positioning System (GPS) sensors, inertial
sensors, and image sensors [3].

Our project is a prototype for a vehicle capable of navigating, locating, and shooting its
targets autonomously. Several similar products are demonstrating similar capabilities for
different tasks. Spot robot by Boston Dynamics is an advanced showcase of the concepts
that we are using [4]. It is a four-legged robot, capable of 3D mapping its environment and
navigating autonomously by avoiding obstacles. It achieves these capabilities via stereo
cameras and has a purchase price of $75,000 [5]. Compared to our project, Spot’s advan-
tages are its increased manoeuvre capabilities and its ability to move on rugged terrains
thanks to its four legs. However, our project’s advantage is the usage of a LIDAR, which
can increase the mapping accuracy in long ranges. Another product similar to our project
is SLAM Robot by Pantech Solutions [6]. It is a lower-end product compared to the Spot
robot, used for development and educational purposes. It performs SLAM using a LIDAR,
operating on a Raspberry Pi. It also uses the Robot Operating System (ROS) as we do. Com-
pared to this robot, our project’s distinctive features are the abilities of target localization

3 Requirements 7

and scene matching by using a stereo camera.

The target end-users of our product are military personnel and defense companies.
Therefore, the expected technical backgrounds are diverse. The employees at defense
companies can develop our final product to fit their needs, whereas military personnel
can immediately start using the product. As the budget for our project is $5000, we as-
sume that the users are likely to spend at least this amount on our product. Familiarity
with the Linux operating system is needed to use our system, as the users will launch the
application from the terminal. Therefore, users without such experience will need basic
training to use our product. However, if needed, the system is suitable to be integrated
with a more user-friendly graphical interface. Nevertheless, such an interface is out of the
scope of this project.

3 Requirements

3.1 Functional Requirements

The final product should be an autonomous system whose aim is to locate a predetermined
target. For this purpose, the autonomous robot is equipped with the following sensors:
a stereo camera, a LIDAR, and an INS. These sensors generate data streams continuously
throughout the operation cycle of the robot, and the robot fulfills its task by fusing these
data streams to obtain a more precise estimation of its surroundings, and by approaching
the target with this information. When searching for the target, the robot generates a
2D map of its current and past surroundings to understand its location, and to choose an
available (traversable) path to approach the target. In order to choose the optimal path
or to detect the target in the shortest time, the robot uses powerful tools such as scene
matching and object detection. The results of exploration are saved in a file that can
be opened via RViz, a 3D visualization tool for ROS. The system can be started from the
terminal by connecting to the Jetson TX2 board remotely and we are not planning to design
a GUI. Therefore, it is not listed as a requirement. Further analysis of the requirements can
be found below.

a) Data Synchronization: To synchronously and optimally fuse the data streams obtained
from the stereo camera and the LIDAR, the system uses location, speed, and acceleration
data, obtained from the INS. With this strategy, possible errors that can arise from incon-
gruities in the data acquisition frequencies of the sensors should be prevented. In order to
ensure robust and continuous data streaming, data synchronization should be performed
at a high rate. The most computationally costly part of this stage is the fusion of the point
clouds and it should be performed at a rate of at least 10 fusions per second.

b) Spatial Mapping: The system contains a stereo camera and a LIDAR in order to gather
data about its surroundings within 3 meters. The data gathered from these sensors in the
form of point clouds should be processed simultaneously and merged with past data using
SLAM algorithms. As the robot obtains point cloud data from two different sensors, it
should fuse them in order to minimize errors due to any internal noise. The robot should
also contain various thresholds and precautionary algorithms to preclude any possibility of

3 Requirements 8

error: for example, if the difference between the point cloud information obtained from
the stereo camera and the LIDAR is not negligible, the robot should choose one of them
temporarily. The speed of generating and updating the map should be able to follow the
data acquisition rate. Therefore, we need to have a rate of at least 10 map updates per
second.

c) Autonomy: The system should be completely autonomous in navigation, data acquisi-
tion, data processing, and decision making based on the environment. Except for a precau-
tionary “terminate process” button, the final product should be able to operate on its own
without any interruptions. After processing the data coming from the stereo camera and
the LIDAR, the robot should decide its next maneuver based on the surrounding obstacles
and passages. For this purpose, the robot should perform segmentation on the image data
obtained from the stereo camera as well. Since the segmentation is not one of the crucial
tasks in the overall flow, we do not require high rates. Furthermore, the segmentation
task is computationally expensive and therefore it may not be feasible to perform it at high
rates. For the purposes of our system, a rate around 2-3 Hz should be enough.

By combining the results of segmentation and information about depth coming from the
point cloud data, the robot should decide on the best maneuver. Furthermore, the robot
should adjust its speed based on the surrounding structures. Lastly, to prevent any loops in
the track (due to revisiting a previously processed location), the robot should have internal
decision-making mechanisms that can preclude this possibility by using the location infor-
mation obtained from the INS, and the current map in the memory. We need to generate
the paths at a rate of at least 10 updates per second to match the speed of map updates.
In order to stably control the robot without any oscillations, delays, or other malfunctions;
we require much higher rates in generating and sending the motor command: at least 50
motor commands per second.

d) Mobility: Mobility should be obtained with the help of motors powered with batteries
and the maneuvering ability should be provided with wheels. The motor speed and the
direction of movement should be determined by the microcontroller, which in turn can
send the necessary signals to the motors. In order to ensure motor commands are issued
at the required rate, the microcontroller should be able to generate PWM signals of at least
400 Hz and change the pulse-width of this signal with at a rate of at least 50 changes per
second.

e) Target Localization: This capability is one of the most essential functions of the robot.
The target should be described to the robot with the help of a picture that contains in-
formation about its location, which can be deduced from objects in the background etc.
Throughout its steering, the robot should analyze the images captured by the stereo cam-
era continuously. In these images, with the help of scene matching algorithms, it should try
to find networks of objects similar to the one given in the target description by analyzing
prominent features of the images. If the robot is confident enough about a match of the
target in the image data, it should point to the target with a laser beam to let the user
know that the target is found. Then, it should stop moving as long as the target is within
the scene.

4 Big Picture 9

3.2 Non-Functional Requirements/Constraints

a) Cost: The maximum cost allowed for our project is 5,000$.

b) Size: There are not any constraints defined explicitly for our robot’s size and weight.
However, there are some limitations to consider while building the product. First, it is
desired to have good maneuverability since it needs to move around easily to collect data.
If its size becomes too large, the robot is not able to maneuver easily in confined spaces.
On the other hand, it should be large enough to carry all the sensors, the board, batteries,
etc. Considering these limitations, we have built our robot smaller than 50x50x50cm. Also,
weight is an important limitation for our product because it increases the need for power
and higher-end motors are required for carrying more weight. Thus, while building the
chassis, we have used light materials such as aluminum plates with holes.

c) Power: The constraint for power is mostly be determined by the motors as they draw
more power when they start moving. At the peak point, we are expecting a total of 4
amperes current from the two motors. We can also estimate the current from the Jetson
TX2 board since we tested the board at maximum load in the laboratory and it draws 2.5
amperes at peak. Li-Po batteries can supply more than the estimated current we need.
However, their capacity will be a constraint since it is around 1500 mAh for moderately
priced batteries. Therefore, the power consumption should be as optimized as possible.

d) Environment: It is specified that the environment in which our robot needs to work is
indoors. We built the setup where we tested our robot.

e) Safety and Health: There are several possible safety hazards for our product. First,
since the system is autonomous, it can move out of control if an error occurs. Also, Li-
Po batteries may explode if they work under extreme conditions or if they get damaged.
Moreover, chemicals in the Li-Po batteries may be hazardous to human health if exposed.
Health issues in our project can mainly arise from safety issues such as a robot physically
harming a person due to its autonomous movement. Hence, our main health requirement
is to have a shutdown button for should such cases occur.

f) Global, cultural and social factors: For the design of our robot, we do not consider
cultural and social factors in the direct sense. However, the design is a direct result of global
factors. We are choosing our parts for the robot, our hardware, and software packages from
what is available currently in the world. And the state of the technologies that we use is
the result of the combined work of many people before us.

g) Standards to follow: The standard that we found most suitable to follow for our project
is OSHA 29 CFR 1910.333 [7]. It constitutes a guide for industrial robots and robot system
safety. We adhered to that.

4 Big Picture

The big picture of the project can be found in Figure 1. For a larger version, see Appendix,
Figure 1. As can be seen from the figure, we use the NVIDIA Jetson TX2 board as the
main computing board, where all the applications run. These applications mainly include

4 Big Picture 10

segmentation, SLAM, scene matching, point cloud fusion, and motion planning. The three
main sensors are the LIDAR, the ZED2 stereo camera, and the Xsens MTi-7 GNSS/INS mod-
ule. The stereo camera and the INS module are connected to the Jetson TX2 board with
USB, whereas the LIDAR communicates with the board through its interface box. As the
board has only one port for USB 3.0, we use a USB hub as well. The motor driver and
the interface box provide analog communication with the motors and the LIDAR, respec-
tively. The interface box is connected to the board with an Ethernet cable, whereas the
motor driver has an analog connection. Lastly, the motors of the pan-tilt laser pointer are
connected to the Arduino MEGA board for control signals and connected to the Jetson TX2
board for power.

Figure 1: The block diagram of the project.

The sensors and the Jetson TX2 board are fixed on the robot. During development,
Jetson TX2 is connected to output devices such as a keyboard, a monitor, and a mouse
with USB and HDMI to utilize the user interface provided by the board. However, during
the testing of new algorithms, the connection is established via WiFi as the robot is not
stationary. The system is currently powered by a 12V dry battery and a 14.8V Li-Po battery.
The power is distributed to the system via a power distribution board.

For the final product, we expect users to establish connection via SSH, which is the
method that we use. Then, the system is launched from the terminal. We use RViz for
mission monitory, which is a 3D visualization tool for ROS. We didn’t implement any addi-
tional user interface or tool for mission monitory as it poses an additional computational
cost for the system. However, we are logging the crucial data for later investigation. The
system can be turned off by closing the terminal.

5 Methods and Implementation Details 11

5 Methods and Implementation Details

This section includes our project plan and the technical details of the tasks required to
complete the project.

5.1 Work Breakdown Structure and Project Plan

The main work packages of the first semester that are grouped under 1.1 and 1.2 in Figure
2 are:

a) Data Acquisition from INS: This task includes obtaining the GPS information as well
as the orientation and position data which is calculated by the Inertial Measurement Unit
(IMU) which is used to calibrate the stereo camera.

b) Data Acquisition from Stereo Camera and Its Calibration with INS: This task includes
calibrating the stereo camera and INS to eliminate any spatial and temporal differences.

c) Data Acquisition from LIDAR and Its Calibration with Stereo Camera: This task
includes obtaining point cloud data from the stereo camera and LIDAR and calibrating
them to eliminate any spatial and temporal differences. The robot’s location at the moment
of data acquisition is also needed to adjust the speed of the robot if necessary and to apply
a transformation to the point cloud data. This transformation is necessary as the point
cloud data is given with respect to the camera’s perspective at all times. These conversions
are needed for adjusting the reference according to our current location, merging the new
point cloud data with the existing information, and mapping the surroundings.

d) Point Cloud Fusion (PCF): Given the point cloud data of the stereo camera and the
LIDAR, we need to fuse these points to obtain a much more informative map of our sur-
roundings. By using the fused point cloud, our goal is to reduce the uncertainty and errors
in the spatial map that is used by the robot.

e) Segmentation: This task includes semantic segmentation of the objects around the
robot by using the image data coming from the stereo camera, which is essential for distin-
guishing convenient paths.

f) Scene Matching: This task includes detecting pivotal objects in a photo to decide
whether the current scene matches with the target scene (i.e. the target and its back-
ground). When we get a match, we need to find the target in the scene.

The main work packages of the second semester that are grouped under 1.3 and 1.4 are
in Figure 2 are:

a) Simultaneous Localization and Mapping (SLAM)

• Odometry: This task includes fusing odometry data by using a Kalman filter where
the states represent the acceleration, velocity, and position in all 6-axes (x, y, z, pitch,
yaw, and roll) to obtain velocity information.

5 Methods and Implementation Details 12

• Gmapping and PCF Integration and Localization: This task includes generating a
dynamic 2D map of the environment by using the fused point cloud and the odometry
data, as well as showing the location of the robot on the created map.

b) Motion Planning

• Navigation and Path Planning: This task includes planning and making correct deci-
sions about which path to follow by implementing motion planning algorithms in order
to reach a particular coordinate without running into any obstacles and getting closer to
the target scene.

• Exploration: This task includes determining frontiers and exploring the unseen loca-
tions based on these frontiers.

c) Building the Robot: This task includes building a robot that can carry the three sensors,
Jetson TX2 module, and batteries.

d) Controlling the Robot: This task includes controlling the robot via a joystick in order
to see whether the wheels operate correctly and the batteries give sufficient power to the
components.

e) Connecting Jetson TX2 to Monitor via Wi-Fi: After ensuring that the robot can carry
the components without any safety issues, the algorithms are tested on the robot to see
whether it can function autonomously. For this purpose, the Jetson TX2 module shares its
screen via Wi-Fi.

f) Target Detection and Laser Pointing: This task includes finding the target object in a
given scene.

g) Laser Pointing: This task includes implementing a platform for a laser pointer on the
robot that points its laser to the target in order to show that the target is found successfully.

The work breakdown structure is given in Figure 2. The work packages that were suc-
cessfully completed in the first semester are grouped together and marked as ’completed’
as seen in the chart. Specifically, Efe completed the calibration of the stereo camera with
the LIDAR, İrem completed data acquisition from the INS module and its calibration with
the stereo camera, Su completed point cloud fusion, Özgür completed segmentation, and
Cafer completed scene matching in the first semester.

Our work breakdown structure has been changed since the second committee meeting
because new work packages were determined and distributed among the group members
for the second semester but there have not been any changes since the third committee
meeting. We successfully completed all the work packages that we had determined for the
second semester. As seen in the chart, Efe completed fusing odometry data via Kalman
filtering and connecting Jetson TX2 module to the monitor via Wi-Fi and Su completed
implementing simultaneous localization and mapping (SLAM) and target detection algo-
rithms. Specifically, she worked on implementing the Gmapping algorithm and integrating
point cloud fusion and localization. İrem completed implementing navigation and path
planning algorithms in collaboration with Özgür who completed implementing exploration
algorithms. The successful implementation and integration of these algorithms have been
crucial for the autonomous movement of the robot. Cafer and Umut completed building the

5 Methods and Implementation Details 13

robot from scratch which requires custom design and integration of several components.
Cafer and Umut also worked on controlling the robot and laser pointing, respectively.

Figure 2: The work breakdown structure of the project.

We have determined six milestones which are shown and described in Figure 3. The
first milestone is data acquisition. Our criterion for success is successfully gathering data
from the three sensors (LIDAR, stereo camera, and INS) since this step is crucial for the
continuation of our project. The second milestone is calibration. We need to successfully
calibrate the stereo camera with the INS module, and the stereo camera with the LIDAR
to eliminate the differences between the spatial and temporal properties of their data. The
third milestone is interpreting the environment which includes point cloud fusion, spatial
mapping, segmentation, and scene matching. The two point cloud data obtained from the
stereo camera and the LIDAR need to be fused successfully in order to be used in further
stages, such as spatial mapping and segmentation. The criteria for success for other al-
gorithms are generating a 2D map of the environment based on sensor data for spatial
mapping, correctly segmenting the environment for segmentation, and recognizing a pre-
viously given environment for scene matching. The fourth milestone is building the robot
as our final product is a moving autonomous robot. The criteria for success are obtaining
a moving robot which can carry the components without any safety issues, controlling the
robot via a joystick for the initial stage, and connecting the Jetson TX2 module to the mon-
itor via Wi-Fi. The fifth milestone is motion planning and target detection. The criteria

5 Methods and Implementation Details 14

for success are detecting allowable paths and making correct decisions for the next maneu-
ver (navigation, path planning, and exploration), localizing the target correctly in a given
scene for target detection, and pointing it with a laser in order to signal that the target has
been found successfully. The final milestone is the integration of the subsystems and their
optimization. The criterion for success is obtaining an autonomous robot which can suc-
cessfully perform SLAM, segmentation, scene matching, motion planning, target detection,
and laser pointing.

Figure 3: The milestones of the project.

The Gantt chart for our WBS (project timeline) with responsible team members is shown
in Figure 4. A larger version of the figure can be found in Appendix, Figure 2 . We worked
on our tasks separately in the first semester and made sure that they worked successfully
separately. We have successfully followed our timeline and finished the tasks for the first
semester. These include data acquisition from the three sensors, calibration of INS and
ZED2 and LIDAR and ZED2, point cloud fusion, spatial mapping, scene matching, and seg-
mentation. Furthermore, we have completed some parts of the tasks for motion planning
(navigation, path planning, and exploration) and target detection.

In the second semester, we have built the robot and achieved controlling it. Next,
we have put emphasis on implementing motion planning algorithms because autonomous
navigation is the core of our project. Then, we have worked on odometry fusion, target

5 Methods and Implementation Details 15

detection, and laser pointing. Lastly, we have integrated all the tasks and optimized the
algorithms that we implemented within our full-blown system. At the end, we tested the
robot in a scenario based environment in order to see whether the robot can function
autonomously.

Figure 4: The timeline of the project.

5.2 Methods and Progress

5.2.1 Current State

The current state of our project is given in Figure 5. A larger version of the figure can be
found in Appendix, Figure 3. Cafer dealt with technical and mechanical issues regarding
the robot such as installation of new motors and laser mount. Umut implemented the
closed feedback control loop for motors and the algorithms for pointing the laser to the
target. Efe worked on fusing odometry data and enhanced the odometry performance. Efe,
İrem and Su worked on navigation, path planning, and exploration. Efe and Özgür worked
on enhancing scene matching. Su achieved target detection, computation of homography
transforms and finding the required yaw/pitch angles for laser pointing. At the end all
work packages are completed. The details of our progress will be explained under each
work package separately.

5 Methods and Implementation Details 16

Figure 5: The current state of the project.

5.2.2 Data Acquisition from INS

The INS module (XSens MTI-7-DK) provides the GPS information as well as the orientation
and position data as calculated by an internal Inertial Measurement Unit (IMU). As the
robot relies on the fusion of multiple data streams, the difference between reference frames
of different modules is an integral part of our problem. The INS module measures all
motion starting from an initial pose to be able to operate on a single reference frame with
known position and orientation. The integrated microprocessor on our INS module can
calculate this information using both IMU measurements and GPS signal and provides the
translation and rotation matrices with respect to an initial global frame of reference. This
data is then transferred to the central processor in order to be used within sensor calibration
algorithms.

We are using an INS module with GPS because GPS signals include information about
the global UTC time, which enables us to synchronize the whole system with respect to
well-known time data. Even in case of GPS signal loss, which is quite probable during in-
door operation, INS modules can continue to supply quite reliable time information thanks
to their very low-drift internal clocks. Therefore, the INS module is also able to incessantly
dictate the common time-reference that is used by all devices.

In summary, the INS module behaves as an anchor point for both spatial and temporal
calibration of the rest of the system. As explained in the upcoming sections, all sensor data
is converted into the temporal/spatial reference frame of IMU. The temporal conversions
are simply time delays whereas the spatial conversions are rigid transformations.

a) Progress up to CM1: We decided to use which INS module to use. Irem did research
about how to obtain data from the INS and perform spatial and temporal calibration of INS

5 Methods and Implementation Details 17

and ZED2.

b) Progress between CM1 and CM2: İrem obtained data from the INS module. The
orientation data as the INS module is rotated mainly around its roll is shown in Figure 6.

Figure 6: INS data obtained from the sensor

5.2.3 Data Acquisition from Stereo Camera and Its Calibration with INS

The stereo camera module that we use, ZED2 from Stereo Labs, is designed to be compat-
ible with the ROS environment. Therefore, there exists a wrapper package in the default
ROS SDK, which lets us use the ZED2 stereo camera with ROS directly. This package in-
ternally handles the communication with the camera module via a USB interface and it
outputs the left and right camera images, as well as a depth map, point cloud and pose
information.

The native output of a stereo camera is in image format and all other outputs are ob-
tained by processing the image data on the software level. Each of the two high-resolution
cameras captures images (left and right) at the same time and transmit them to an external
computer device for processing. The processing unit we use for this purpose is the Nvidia
Jetson TX2 development kit and the manufacturer asserts that this device is compatible
and tested with their product.

Since the relative position and relative orientation of the camera pairs in stereo camera
systems are well-known and constant, simultaneously captured pairs of images can be
used to represent the perceived environment in three dimensions. Likewise, ZED2 stereo
cameras have a baseline length, a separation between two “eyes”, around 15 cm and the
lines of vision of the cameras are parallel with each other. This configuration allows them
to capture a high-resolution representation of the scene and estimate depth by comparing
the displacement of pixels between the left and right images.

5 Methods and Implementation Details 18

Figure 7: Images obtained from the left and right eyes of the stereo camera. [8]

There are several camera settings available for tuning a ZED2 camera module. De-
pending on the maximum available or reliable data transfer rate of the USB interface, the
computational capacity of our main processing unit (Jetson TX2 board), and the environ-
mental conditions, these settings can be manipulated. The most prominent ones are the
resolution and frame rate settings because they combinedly determine the rate of the data
produced. In order to ensure maximum transfer rate performance between the peripheral
and the Jetson board, we are using a high-speed USB 3.0 connection. Apart from the image
acquisition settings, the qualitative performance can also be enhanced by adjusting the set-
tings of the onboard ISP (Image Signal Processor) that performs various image processing
algorithms on the raw image captured by the dual image sensors.

After the data is preprocessed by the onboard ISP unit, it is transferred to the Jetson
computer in various available image formats (rectified, unrectified and grayscale). The
ZED2 Software Development Kit (SDK) collects this data and performs depth-sensing al-
gorithms to extract the spatial information in three dimensions. The output can be rep-
resented either as a depth-map or a 3D point cloud. The depth map contains a distance
value for each pixel in the image output, where the distance is calculated from the back
of the left eye of the camera to the scene object. On the other hand, the point cloud is a
collection of points in 3D space which represent the external surface of the scene and can
contain color information. For our application, we decided to use point clouds since this
type of data can be fused with the LIDAR data more easily.

As the whole robot is in motion during operation, the sequence of the images captured
by the module have different reference frames. To account for temporal changes in the
position of the camera, we need an estimate for the relative position and orientation of the
system with respect to a global reference point. This is achieved with the help of an IMU
(Inertial Measurement Unit) module which calculates the position and orientation of the
camera at the time of image capturing.

One of the main challenges in translating and rotating the 3D point cloud, according
to its relative position and orientation, is the temporal synchronization between the two
streams of data obtained from the stereo camera and IMU. Since the amount of time delay
between the sensing at the relevant module and the reception of data at the relevant script
running inside the main computer might be different for these two channels (IMU and
stereo camera), the transformation dictated by each IMU measurement cannot be directly
applied to the most recent point cloud. In contrast, we need to transform the point clouds

5 Methods and Implementation Details 19

according to the IMU measurements made at the same time instant at which the ZED2
captures the associated image. Therefore, we need a precise way to measure and keep
track of the image capture time with respect to a synchronized clock.

Another one of the challenges in calibrating the stereo camera data with IMU is related
to the spatial distance between two modules. Since the two sensors, stereo camera and
IMU, are located at different positions, their reference frames are not in exact match with
each other. Thus, the rotation information measured by the IMU module does not match
with the rotation observed according to the reference frame of the camera. In order to
solve this problem, we need a way to estimate the difference between the two reference
frames. Since the relative position/orientation of the modules may not be necessarily the
same for each run of the robot, we have decided not to implement it based on hard-coded
numerical parameters.

We use a toolbox called Kalibr [9] in order to solve both temporal and spatial synchro-
nization problems. The calibration procedure is only performed when the robot starts to
operate and done using an “Aprilgrid” calibration target which can be seen in Figure 8. The
target is fixed at a position with moderate distance (1-2 meters) in front of the stereo cam-
era and the camera-IMU system is moved in front of the target to excite all IMU axes while
keeping the target in sight at all times. Firstly, the recording of the camera and the INS data
is enabled to obtain a rosbag containing the grayscale image data from the left and right
camera and IMU data from the INS. Secondly, the camera-IMU system is slowly rotated
around its pitch, yaw, and roll 3 times and then moved up and down, side to side, and back
and forth 3 times to excite all IMU cells. Thirdly, the camera calibration command of Kalibr
is ran with four arguments: the recorded rosbag, the names of the recorded camera topics
(raw grayscale images from left and right camera of ZED2), the model of the camera (pin-
hole), and the YAML file of the Aprilgrid calibration target which contains specifications,
such as tag size and tag spacing. This command generates a new YAML file containing the
camera intrinsic and extrinsic calibration parameters. Finally, the camera-IMU calibration
command of Kalibr is ran with two arguments: the camera YAML file (generated in the
previous step) and the IMU YAML file. The camera-IMU system becomes calibrated after
completing these steps successfully.

5 Methods and Implementation Details 20

Figure 8: The Aprilgrid calibration target. [10]

a) Progress up to CM1: Su obtained the point cloud data from the stereo camera, which
can be seen in Figure 9.

Figure 9: Point cloud data obtained from the stereo camera.

b) Progress between CM1 and CM2: İrem started working on the spatial calibration of
INS and stereo camera by using the Kalibr [9] package. The locations of the right and left
eye of the stereo camera are shown in Figure 10.

5 Methods and Implementation Details 21

Figure 10: The locations of the right and left eye of the stereo camera.

c) Progress between CM2 and CM3: İrem completed the spatial calibration of INS and
stereo camera. The calibration results (errors) are shown in Figure 11.

Figure 11: Calibration results.

5.2.4 Data Acquisition from LIDAR and Its Calibration with Stereo Camera

The LIDAR device that we use, Velodyne VLP-16, is also designed to be compatible with
the ROS environment. Therefore, there exists a wrapper package in the default ROS SDK,
which lets us use VLP-16 LIDAR with ROS directly. Similar to the stereo camera, this pack-
age internally handles the communication with the LIDAR via an ethernet interface and
outputs the point cloud representation of the received data. The native output of LIDAR
is in “laser scan” (sometimes called LSA) data format which consists of the raw measure-
ments made by each laser/sensor pair and corresponding measurement timestamp. Then,
this raw data is processed by the ROS Velodyne driver on the software level to generate the
point cloud data. Similar to the stereo camera, the LIDAR might also suffer from spatial
and temporal synchronization problems. Therefore, we need to synchronize its data with
respect to the common reference frame achieved within the camera-IMU system.

Our LIDAR module can provide its data together with timestamps with respect to an
internal clock, and this clock should be synchronized to an external clock with the help

5 Methods and Implementation Details 22

of various interfaces. The internal clock consists of two parts called sub-second, ToH (Top
of Hour) counters. As the name suggests, the sub-second counter rollovers every second
and counts in microsecond precision. It is zeroed at each rising edge of an externally
provided Pulse Per Second (PPS) signal. Since the internal clock has sufficiently low time
drift, it is adequate to supply the synchronization signal once per second. On the other
hand, ToH counter measures the “Minutes and Seconds” part of the internal clock and its
synchronization is done through an NMEA message. As LIDARs are usually designed to be
used in conjunction with global geolocalization, their synchronization interfaces generally
support the acquisition of NMEA messages. This format includes the information about GPS
fix time (in at least second-precision), latitude/longitude, lateral speed, and true heading
as observed or calculated by an external GPS receiver module. Using the GPS fix time
information, LIDAR updates its ToH counter.

Therefore, we are required to supply both a PPS signal and an NMEA message. As
our INS module is designated to be the central reference frame for all other peripherals,
we should use its output data to provide these signals. However, some INS modules do
not support NMEA message output, and their output needs to be converted into an NMEA
message. If it turns out to be the case, the Jetson board acts as an intermediary between
INS and LIDAR in order to convert the output of INS to NMEA message format.

The last part of the synchronization process is to integrate the LIDAR module into the
common spatial reference frame achieved within the camera-IMU system. This can be done
by calibrating the LIDAR either with the INS or with the stereo camera. However, the litera-
ture mostly includes previous practices of LIDAR-camera calibration rather than LIDAR-INS
calibrations. Therefore, we follow the common practice and optically calibrate the LIDAR-
camera pair. We use the ROS module named “LIDAR-Camera Calibration using 3D-3D
Point correspondences” [11] that follows a point cloud matching approach in finding the
translation matrix. The module requires the setting in Figure 13. We have two cardboards
with Aruco markers on their corner. LIDAR can detect the cardboards, whereas ZED2 can
detect the Aruco markers, as it has the image information. The algorithm requires premea-
surements about the alignment and the size of the Aruco markers, as well as the size of
the Aruco markers. By using the point cloud data from both of the sensors and the given
measurements, it finds the transformation matrix between the reference frames of ZED2
and LIDAR. This matrix is used to link the data obtained from the sensors. Calibration is
performed once at the start of each operation cycle.

a) Progress up to CM1: Efe obtained the point cloud data from the LIDAR, which can
be seen in Figure 12. Furthermore, Efe did research about how to perform spatial and
temporal calibration of LIDAR and ZED2 and started working on it.

5 Methods and Implementation Details 23

Figure 12: Point cloud data from the LIDAR.

b) Progress between CM1 and CM2: Efe worked on the spatial calibration of LIDAR
and stereo camera. The setup used for the calibration is shown in Figure 13. The points
detected on the edges of the cardboard are shown in Figure 14. In order to detect the edges
of each cardboard by LIDAR, they are placed diagonally such that the horizontal laser scans
of the LIDAR maximally overlap with the edges. Since spatial calibration can be performed
better if we use multiple sources of data with small to no noise correlation, our set-up uses
two card-boards separated by some distance.

Figure 13: Setting for spatial calibration of stereo camera and LIDAR.

5 Methods and Implementation Details 24

Figure 14: Points detected on the edges of the cardboard.

5.2.5 Point Cloud Fusion (PCF)

For this step, we aim to fuse the point cloud data generated continuously by ZED2 and
LIDAR to obtain a new point cloud stream. However, the point clouds that were fused
have different reference frames. After we obtain a common spatial frame by calibrating
ZED2 and LIDAR as described in the previous section, the point cloud data obtained from
both sensors overlap. An example for two point clouds before and after being calibrated
to the same reference frame can be found in Figure 15, which summarizes the process
explained in the previous section. To easily process the point cloud data, we use the Point
Cloud Library (PCL), which is an open-source library that is used for image and point
cloud processing. It contains state-of-the-art algorithms for various applications, and it can
be used through ROS [12]. PCL provides functions such as downsampling, filtering, and
object recognition. To use PCL methods on our point clouds, we convert the data published
by ROS in the form of “sensor msgs/PointCloud2” to “pcl::PCLPointCloud2” first. Then, we
convert “pcl::PCLPointCloud2” data to “pcl::PointCloud〈pcl::PointXYZ〉” for manipulations.

Figure 15: Two different point cloud data, calibrated [13]

5 Methods and Implementation Details 25

With fusion, we aim to obtain a result that contains more information compared to its
constituents. Therefore, our goal is to combine the strengths of the data obtained from the
two sensors to get a much more precise and informative point cloud. As ZED2 is better
at depth-sensing in short-range and provides a much more dense point cloud compared to
LIDAR, it is sensible to utilize mostly its point cloud data for short distances. For distances
larger than 3.0 m, LIDAR provides a more stable and accurate point cloud compared to
ZED2, as it is designed for long ranges.

For this fusion algorithm, we add up the point clouds. As they are already spatially
calibrated, they fit. However, to decrease the memory burden, we also need to downsample
the resulting point cloud. For this purpose, we use the ApproximateVoxelGrid of PCL. This
library creates 3D voxel data from the point cloud. The points present in each voxel are
approximated with their centroid to downsample the data. This approach provides a small-
sized cloud that is able to represent the surroundings accurately. In the end, the resulting
point cloud is transformed to “sensor msgs/PointCloud2” and is published from the point
cloud fusion node with a frequency of around 3 Hz.

We should note that we do not use all the point cloud data obtained from the sensors
because the publishing frequency of the sensors is higher than the speed of the algorithm.
ZED2 publishes point clouds with a frequency of 5 Hz, whereas LIDAR publishes them
with 15 Hz. However, as the speed of our robot is not high, it is enough to have a fused
point cloud publishing frequency higher than 1 Hz, which is already achieved. Lastly, after
we obtain the fused point cloud, we merge it with the existing data by using the SLAM
algorithms to obtain a 2D map of the environment while steering.

a) Progress up to CM1: Su did research about how to perform point cloud fusion and
started working on it.

b) Progress between CM1 and CM2: Su performed point cloud fusion between the data
that comes from the stereo camera and LIDAR. The calibrated point clouds of stereo camera
and LIDAR are shown in Figure 16.

Figure 16: Calibrated point clouds of stereo camera and LIDAR.

5 Methods and Implementation Details 26

5.2.6 Segmentation

Segmentation is the process of delineating the given scene when multiple objects are to be
recognized. Since our robot is designed to operate in an indoor space, segmentation plays
a crucial role in the decision-making process of the rover. We should distinguish obstacles
from suitable paths for correct motion planning. The results of the segmentation can be
used to determine the phase and direction of the rover to avoid any confrontation with
an obstacle. The existing objects in the path are classified in terms of their features. For
this sake, we utilize a deep-learning-based inference model. The image acquired from the
ZED2 stereo camera is further processed in this segmentation model. During the inference
time, the segmentation model receives the left camera image as the input and produces a
segmentation map according to the classified objects.

Our model utilizes a residually connected encoder-decoder architecture to extract the
relevant features from a two-dimensional image to perform segmentation. We carried out
experiments with multiple neural network models and decided to utilize the ResNet-18
model since it provides high accuracy and fast response. The residual connections in the
neural network enable the construction of deeper architectures and avoid gradient van-
ishing problem since the problem of predicting the output from scratch is mitigated with
the help of prior information provided at the output of the residual layer. Moreover, the
convolutional layers provide a high capability for feature extraction with fewer parameters.
Therefore, the encoder and decoder of the segmentation model contain cascaded convo-
lutional neural networks with 3x3 filters preceded by batch normalization. The activation
function is determined as Leaky Rectified Linear Units (Leaky ReLU) to achieve nonlinear
classification. The pre-processing and post-processing steps adjust the size according to the
size of the input obtained from the stereo camera and produce an output with the same
size as the input. Furthermore, the transfer learning approach is employed to determine the
weights of the parameters on the PyTorch environment. The neural network model trained
in a supervised manner is capable of producing accurate segmentation maps, however,
lacks fast response due to high computational complexity. The TensorRT module provided
by Nvidia optimizes the network architecture and helps to deploy the segmentation model
on real-time applications. After the implementation of optimizations, TensorRT chooses
kernels that are unique for the program in order to maximize performance on the Jetson
TX2 board. Thanks to this backend algorithm, the implementation of the inference model
is accelerated.

a) Progress up to CM1: Özgür performed segmentation by using ResNet 101 residually
connected neural network model. The segmentation algorithm was tested in the EEE 493
Lab and the performance of the results was benchmarked. It took around 5.5 seconds to
perform segmentation with this model. The results are shown in Figure 17 which demon-
strate high accuracy. The depth of the network can be reduced and different network
architectures can be tested based on the time constraints.

5 Methods and Implementation Details 27

Figure 17: Initial trials for automatic delineation of the EEE 493 lab indoor scene.

b) Progress between CM1 and CM2: Özgür downgraded the segmentation model to ful-
fill the time requirements. He utilized a ResNet-18 model, which is trained with the SUN
RGB-D dataset commonly available on the web. He performed the experiments with a wide
range of manually annotated labels available with the dataset in order to avoid under-
fitting. In particular, the training procedure included 20 types of labels as ground truth ref-
erences including wall, floor, ceiling, table, door, and person. Efe and Özgür integrated the
segmentation model with the main system constructed on Jetson TX2. They also achieved
high throughput for the segmentation system by performing the experiments on the Jetson
TX2 GPU. The inference rate for the segmentation system is 10 FPS in the standalone mode
and 5 FPS while Jetson GPU is heavily used. The results of the segmentation model is
shown in Figure 18.

Figure 18: A representative image from our segmentation model.

5 Methods and Implementation Details 28

5.2.7 Odometry

The core of our project is to achieve autonomous navigation. To this end, we are required
to obtain the odometry data of the robot, which is the estimate of the differential position
with respect to a reference point. In the most robotic applications, this reference point
is selected as the point where robot starts to operate at each run. Since our robot is not
also required to position itself with respect to a global reference frame, the origin for the
odometry data is the starting point.

In order to achieve this goal, we utilize multiple sources of odometry data and fuse
them to obtain a less noisy and more robust estimate for the odometry. The fusion is done
with the help of a Kalman filter where the states represent the acceleration, velocity, and
position in all 6-axes (x,y,z, pitch, yaw, and roll). In order to be able to keep track of all
6 states stably, we are required to use data sources that can provide both position and
acceleration estimates. Even though acceleration data can be integrated twice to obtain
a position estimate, or position data can be differentiated twice to obtain an acceleration
estimate; this approach will result in erroneous results due to accumulation of errors.

Keeping this possible problem in mind, we determine two different sources of odometry
that is able to stably provide the required data to the Kalman filter. The first one is the INS
which can provide low-noise information about the acceleration of our system. The second
one is the stereo camera (ZED2) which generates odometry data with its internal IMU.
This data is strengthened with visual odometry, where the camera perceives the changes in
motion by stacking its images and keeping track of the differences.

However, we observed that the performance was not sufficient despite using two sources
of information because of the accumulation of errors. In particular, the odometry data was
wobbling in the y and z axis, which correspond to left-right and up-down translational
motion respectively. Since our robot cannot move in both of these directions, we decided
not to consider the outputs of the sensors and to input them as zero to the Kalman filter.
Similarly, our robot cannot pitch or roll, therefore we input them as zero to the Kalman
filter as well. Furthermore, we have observed that the yaw data obtained from the INS
was prone to errors, therefore we used the output of the stereo camera only. After these
changes, the wobbling stopped and the odometry data became sufficient for exploration.

a) Progress between CM1 and CM2: Efe did research about odometry fusion by using
Kalman filtering. He also found a suitable package to handle odometry fusion using Kalman
filtering and implemented the initial version for our robot.

b) Progress between CM2 and CM3: Efe made changes to the configuration of the Kalman
filter and changed the frame transforms between the input and output odometry data in
accordance with the project structure.

c) Progress between CM3 and CM4: Su and Efe improved the odometry by considering
only the axes of interest, as described above.

5 Methods and Implementation Details 29

5.2.8 Simultaneous Localization and Mapping (SLAM)

Given the odometry data and the laser scan obtained from the sensors, the next goal is to
construct a map of the environment and to position the robot on that map. These data are
fed into the gmapping package of ROS, which is a wrapper for the open-source GMapping
library of OpenSLAM [14]. The GMapping package uses the Rao-Blackwellized particle
filter technique to perform simultaneous localization and mapping. In this technique, each
particle holds a map of the environment and the goal is to minimize the number of particles.
This is done by adaptive techniques considering the movement of the robot and the most
recent observation of the environment. This approach helps to decrease the uncertainty in
the pose of the robot [15]. Subsequently, the gmapping package publishes a 2D occupancy
grid, which is a floor-plan-like map of the environment. The laser scan input required
by GMapping is obtained with the package “pointcloud to laserscan” [16]. This package
converts the 3D fused point cloud data to 2D laser scan data, which is then used to create
the 2D map.

a) Progress up to CM1: Umut did research about existing packages for spatial mapping
and ran a tutorial on the robot simulator platform Gazebo with a prepared environment
and robot. A predefined robot is controlled in a simulated environment while performing
mapping and localization.

b) Progress between CM1 and CM2: Umut found a suitable bag file and used the gmap-
ping package on Jetson TX2 board. The resulting map is shown in Figure 19.

Figure 19: Spatial mapping results.

c) Progress between CM2 and CM3: Su implemented the system to convert point cloud
data to laser scan data and therefore launched GMapping. An example laser scan on top
of a map constructed in the EEE-102 laboratory and displayed with RViz can be found in
Figure 20.

5 Methods and Implementation Details 30

Figure 20: An example laser scan on top of a map.

5.2.9 Scene Matching

Scene matching is the process of matching two images that have different illuminations
or scales, or that are taken from different angles. This task is necessary for our project
because the robot will have a picture of the scene with a target, and it needs to recognize
that scene while moving around. However, the given picture and what the robot sees differ
by perspective, brightness, etc. Therefore, we need scene matching algorithms for the robot
to recognize the scene. After this step, the robot is able to look for the target in that specific
area.

To match the image of the scene with the image seen by the robot, features in the two
images are detected first. Then, these features are compared and matched if they have
similarities higher than the threshold. Features can be thought of as the key-points in an
image. A corner of an object, boundaries, interestingly shaped patterns are examples of
features and can be detected by filters. On the other hand, flat surfaces, for instance, do
not contain any features.

In our project, feature matching is performed by using OpenCV library [17]. OpenCV
has various feature detection algorithms which have their pros and cons. Currently, we
tested commonly used scene matching algorithms provided by the OpenCV library and we
obtained the best trade off between the accuracy and the speed with ORB (Oriented FAST
and Rotated BRIEF) algorithm. The main advantage of ORB is its speed, which makes
it suitable for real-time applications like our project. Additionally, ORB displays superior
trade off between the computational complexity and the accuracy of the detection algo-
rithm. The ORB detection algorithm both relies on variance and correlation of the dis-
tribution of the spatial signals. Furthermore, it utilizes orientation components unlike its
ancestor FAST algorithm which makes ORB more robust than FAST. The ORB algorithm
also makes use of rotation aware version of BRIEF algorithm. In this way, the ORB algo-
rithm receives smoother input patches denoised by the BRIEF algorithm and constructs a
steered version of them to detect the rotation changes. During the validation procedure, we

5 Methods and Implementation Details 31

observed that the ORB algorithm outperforms FAST and BRIEF algorithms both in compu-
tational complexity and the robustness against rotational variances. More specifically, run
time of ORB algorithm is less than 50 ms which is the least run time score when compared
with other existing solutions. This algorithm also captures the same scene when it takes
the rotated version of the desired scene as an input.

a) Progress up to CM1: Cafer started testing scene matching algorithms on existing data-
sets whose results are shown in Figure 21. The algorithm is able to match the objects in
two photos of a scene which are taken from different angles.

Figure 21: Scene matching results.

b) Progress between CM1 and CM2: Cafer tested scene matching algorithms in different
conditions whose results are shown in Figure 22.

Figure 22: Scene matching results.

c) Progress between CM3 and CM4: Ozgur and Efe investigated the OpenCV library de-
tectors and compared the accuracy and reliability of these detectors. For this purpose, they
designed different testing environments and placed realistic targets to these environments.
They found out that the ORB algorithm outperforms other algorithms in terms of compu-
tational complexity and accuracy. This algorithm produces better feature matching results
which are robust to angle change and object type change. Therefore, they decided to in-
tegrate this algorithm into the general framework for the decision making process of the
robot.

5 Methods and Implementation Details 32

5.2.10 Building and Remote Controlling the Robot

To perform the functions for our desired goals, we needed a rover-like robot capable of
moving in indoor and mild outdoor environments. As the goals of our project are mainly
software-based solutions, we were encouraged, by our company mentors, to use a pre-built
robot platform for our project. However, the robot platforms and pre-built robots sold in
the market usually target a hobby-grade consumer base that isn’t capable of supporting
the hardware we are using. Also, the weight and shape requirements due to our hardware
were not compatible with the pre-built platforms we investigated. Therefore, we had built
the robot ourselves from scratch.

The main constraints that we considered while designing the robot were weight and
shape. It is necessary for the robot to handle the weight of our hardware and battery
easily, and to have enough space to carry all the components. The battery makes up a large
portion of the robot’s weight. Hence, the main constraint while designing our robot was
power use. If stronger motors, which are able to carry more load, were to be used, they
would consume more power. Hence, we would need a bigger battery which would weigh
more. There is a power-weight trade-off that we wanted to balance. For this, we decided to
use two motors instead of four which is widely used in skid steering as an easy and robust
solution. For steering with two motors, we investigated designs with idle wheels. However,
we couldn’t find an idler wheel that met our quality requirements in the market. Hence,
we continued to investigate different steering designs. Initially, we used omni wheels as
idler wheels to make the robot move freely. However, we had to change the wheels as they
turned out to be too small and made the robot touch the ground from time to time. There
were not larger omni wheels available in the market, thus we used the same wheels which
are attached to the motors as idler wheels in the final design. The use of normal wheels
also allowed the robot to move freely and did not create a problem.

Moreover, another main consideration in our robot design was modularity. While our
first objective was to make a robot that can support our existing hardware, we had to be
ready for changes in the project, such as a possible need for a second Jetson board for
computational power or a change of sensors’ places. Hence, we needed to be adaptable
as we went along. For this, we designed our robot to be composed of adjustable layers
mounted to an aluminum frame, which are attached to our support beams. For instance, if
we need to add a second board to the design, we can simply add another layer to the robot
frame. Finally, while designing the robot, we factored in the shape of the popular robot
platforms, as we needed to build a robot similar to them to be able to use existing software
libraries more conveniently.

Since our aim is to have a mobile robot as our final product, it should have a power
source mounted to it, which supplies power for at least 20 minutes. For our case, we
should supply power to the Jetson TX2 board, LIDAR, and DC motors. Arduino and the
motor controller draw their power from the Jetson board. To supply power, we considered
different kinds of battery solutions such as lead-acid/SLA, lithium-ion, lithium polymer and
nickel-metal hydride batteries. At first, we chose lead-acid batteries only as they are the
cheapest option for the same amount of power. They can output sufficient current, are easy
to charge, and easy to maintain as they don’t easily breakdown. The main reason they are
not widely used in robot projects is their heavier weight compared to their alternatives,
but we had sufficient capacity to carry their load. However, while using lead-acid batteries

5 Methods and Implementation Details 33

only, we encountered problems during the operation of the robot. Thinking that the power
output was not sufficient, we used a setup with two lead-acid batteries in parallel, but
we still had problems with the Jetson board shutting down during operation. After our
investigations, we concluded that the lead-acid battery could not supply the necessary
current as fast as needed during the take off of the robot, resulting in a momentarily current
drop which makes the Jetson board shut itself down due to safety as it demands a stable
power supply. Hence, we moved on to Li-Po batteries as they have high discharge rates. At
the end of our trials, we concluded that a setup where a Li-Po is supplying the Jetson board
and the LIDAR, and a lead-acid battery is supplying the motors was a good solution, as the
Li-Po can provide a stable current and the lead-acid battery has the capacity to power the
motors for long periods of time.

In order to control the robot before implementing the motion algorithms, we connected
a joystick to the Jetson board via Bluetooth. Then, we implemented a package to perform
the motion commands coming from the joystick with the robot.

a) Progress up to CM1: Cafer and Umut did research about how to build the robot and
which materials to use in the process.

b) Progress between CM1 and CM2: Cafer and Umut decided on the first design of the
robot and drew schemes using TinkerCad which are shown in Figure 23. They also decided
on which components to use and purchased them.

Figure 23: Sketches of robot design.

c) Progress between CM2 and CM3: Cafer and Umut built the robot from scratch based
on the initial design between CM2 and CM3. First, the design in Figure 23 was updated
slightly and sketched by professional computer-aided design (CAD) software, SolidWorks.
Then, the design was arranged by a professional engineer to make it ready for production.
The final design of the parts can be seen in Figure 24. For the chassis, aluminum sheets
with 2mm thickness were used. The aluminum sheets were drilled and bent by workers.
Aluminum has the advantage of being light and still durable enough to carry the required
weight. This is especially important since the weight is an important constraint for the
project as explained before. Moreover, the design has a hole pattern on it for two purposes.
The holes make the chassis lighter and they provide places to assemble components by
using bolts and nuts. The hole pattern is uniform across all parts which provides flexibility
while changing the places of chassis parts and components. Also, the pattern is consistent
with the standard motor frame hole pattern.

5 Methods and Implementation Details 34

Figure 24: Final design of chassis parts.

In order to place the sensors, batteries and other materials, shelves were placed on the
chassis. The material for the shelves was selected as acrylic glass. The biggest advantage
of acrylic glass is being an insulator as electronic components are placed on it. Also, acrylic
glass is easy to drill and cut by using a hand drill so that we were able to place the compo-
nents of the robot at the desired places by drilling holes to place bolts. The final look of the
robot with all components attached to the shelves is given in Figure 25. As it can be seen,
there are 2 shelves on the robot, one at the bottom carrying the batteries and the motor
driver, and one in the middle carrying the Jetson board, stereo camera, INS, Arduino, and
USB hub. LIDAR is placed at the top, on the aluminum sheet between two beams.

Figure 25: Final look of the robot with all components attached.

d) Progress between CM3 and CM4:Two brushed DC motors are replaced with four en-
coded DC motors. Four motors give the robot better traction because the total torc of the

5 Methods and Implementation Details 35

motors is increased. It also provides greater maneuverability. The robot’s base is now in
the middle of the robot and it can turn around this axis. The newly mounted motors are
also faster. The motor encoders generate a square wave whose frequency is proportional
to the angular velocity of the DC motor. Counting the rising edges of this signal allows
us to find the frequency of the encoder signal. The encoder signals are connected to in-
terrupt pins of the Arduino microcontroller which counts the rising edges of the signal.
Before CM4 we were using Arduino Uno but to use four encoded motors we changed it to
Arudino Mega microcontroller because Arduino Uno didn’t have enough interrupt pins. We
drilled new holes in the robots platform to place the Arduino Mega. Counting the rising
edges of the signals, we can calculate the velocity of each motor in the unit of rounds per
minute. Because we need to measure the velocity of this signal long enough to calculate
velocity information, the velocity information updates every 500 milliseconds. This may
be improved using better technologies to measure the velocity but our encoders introduce
a bottleneck. We have built a serial communication system between the Jetson board and
the Arduino microcontroller. For the movement planned by the movebase, the required
velocity commands are sent to Arduino in real-time through the serial communication. The
measured velocities of the motors are also provided to the Jetson board through this com-
munication link. To control the four encoded DC motors Arduino Mega microcontroller
takes the desired velocities for each motor from the Jetson board. It measures the actual
velocities of each motor. As a result it outputs a pulse with modulated control signal to the
motor driver. The output signal is calculated with a PID controller which takes the actual
velocity as the feedback to achieve the desired velocity input. The proportional, integral
and derivative control parameters are tuned for the robot with trial and error. We set them
to good enough parameters for the movement of the robot.

The height of the motor is kept the same contrary to what we have planned. We were wor-
ried that because the Lidar was standing that high the vibrations in the robot could affect
the performance of the Lidar. However, we observed that we didn’t had any significant
problems in that way. Hence, we decided to keep the height of the robot as is.

5.2.11 Path Planning and Exploration

Path planning and exploration are the most crucial yet complex tasks, as they build on
the previous work described above. We ensured that all the components in the system are
working in harmony in order to obtain autonomous motion. Path planning takes a goal
location as its input. Then, it uses information obtained from the sensors to find a path
that is free of obstacles. On the other hand, exploration uses the map of the environment
and the robot’s location data from the beginning of its operation cycle to suggest previously
unvisited places to explore. We use “move base” [18] and “explore lite” [19] packages for
path planning and exploration respectively, which are both ROS packages.

“move base” has two planners and two costmaps, one local and one global for each.
The cost-maps hold information about the location of the obstacles around the robot. The
obstacles are detected with data coming in two formats: a laser scan and a point cloud. For
our system, laser scan data is obtained from changing the format of the fused point cloud
data as described above. Additionally, we use the point cloud data of ZED2. The incoming
data is used for marking or clearing, which correspond to inserting or removing obstacle
information into the costmap, respectively. The cells in the cost-map can be in one of the

5 Methods and Implementation Details 36

following three states: occupied, free, or unknown. We label a cell as occupied when there
is an obstacle in that location, free when there is not any, and unknown if we have not
seen that location yet. The cost of the cell depends on the state that it is in. Each map
is updated with a frequency of 5 Hz. The localization of the robot in the map is achieved
with GMapping. Lastly, global and local costmaps are used to accomplish global and local
navigation goals respectively. Therefore, the local costmap is a smaller but more detailed
map of the surroundings, whereas the global map is larger and roughly sketched.

Figure 26: The exponential decay of the cost from an occupied state to a free state, and
the corresponding inflation radius.

Some important parameters associated with the configuration of the costmaps are the
following: width and height of the map, footprint, inflation radius, obstacle range and
raytrace range. For the global costmap, the width and height are both set to 10 m, whereas
for the local costmap, they are set to 6 m. The footprint corresponds to the dimensions of
the robot. The center is assumed to be (0, 0), and the user enters the values by considering
the coordinates of the wheels by taking the center of the robot as the origin. Inflation
radius is a crucial parameter as it determines the costs associated with certain cells. The
costs of the cells have the following structure: an occupied cell has a high cost (e.g. 128),
whereas the free space surrounding the obstacle has a cost of zero. The cost decreases in
an exponential fashion starting from the occupied space, and converges to zero in the free
space. The inflation radius determines the decay length from maximum cost to minimum
cost. A scheme of this process can be seen in Figure 26. The obstacle range corresponds to
the maximum range for which a sensor reading results in inserting an obstacle to the map.
It is taken to be 2.5 m by default. Lastly, raytrace range corresponds to the maximum range
for which we detect free space.

Given the local and global costmaps, the corresponding local and global planners aim
to find the optimal path to a given navigation goal. With its different cost functions, it
can aim to minimize the distance to the obstacles, the time the robot spends on going
backwards, etc. The global planner tries to find the optimal route to the given navigation
goal by taking the large-scale structure of the environment into consideration, whereas the

5 Methods and Implementation Details 37

local planner aims for finding the optimal path given the immediate surroundings. After
finding a route, “move base” outputs the necessary angular and linear velocities to follow
it. During this process, it also updates its outputs with respect to the resulting trajectory of
the robot. The minimum and maximum possible velocities are determined by the user. For
our system, the minimum and maximum linear velocities are in the range 0.25 m/s and
0.4 m/s. The reason for such a small range is due to the large weight of the robot: if the
minimum velocity is too small, the robot cannot move, and it cannot go with a speed larger
than 0.4 m/s.

“explore lite” provides greedy frontier-based exploration in which frontier means a bor-
der separating a known territory from an unknown one. The robot explores its environment
in a greedy fashion until there are no unvisited places left (no frontiers left to explore) when
the “explore lite” node actively runs. As this package uses “move base” for navigation, it is
important to make sure that the “move base” node is configured and initialized correctly
before running the “explore lite” node. This package requires a map in order to look for
frontiers and plan exploration so it either obtains a costmap published by “move base”
or a map constructed by simultaneous localization and mapping (SLAM) algorithm. For
this purpose, it is subscribed to two messages which are OccupanyGrid and Occupany-
GridUpdate, which correspond to a map from SLAM or a costmap from “move base” and
incremental updates on map or costmap, respectively.

The inflation radius parameter of “move base” costmap may allow the robot to explore
very small frontiers so it may be an advantage over using the map constructed by SLAM.
These very small frontiers may also be explored by setting the min frontier size parameter
of “explore lite” to a reasonably small number. The information coming from SLAM is used
for exploration purposes in our project, which contains the map of the environment along
with the current location of the robot. The min frontier size is set to 0.5 m in order to
explore small frontiers. After the “move base” node is correctly initialized and the map
is obtained from SLAneed to critically assess your system performance and compare your
results withM, “explore lite” package allows the robot to explore its environment by finding
the frontiers that have not been visited before. As the robot explores new frontiers, it sends
movement commands to “move base” so that it can find a path that is free of obstacles.

a) Progress between CM2 and CM3: We have integrated both packages into our main
flow and test them in different settings. An example global costmap that we obtained can
be found in Figure 27. However, we have observed problems with autonomous movement
in difficult conditions. The robot cannot properly move when it is in an environment full
of obstacles which are hard to discern.

5 Methods and Implementation Details 38

Figure 27: An example global costmap. Dark regions correspond to cells with a high cost.

b) Progress between CM3 and CM4: Efe and Su have configured the algorithm for op-
timal performance. They have changed the transform frame of operation for exploration
algorithms since the transformations given by the mapping algorithm changes abruptly and
with low frequency. Instead of using the transform frame provided by the mapping, they
used the global transform frame of the odometry data. By this way, the performance of the
exploration and localization is largely improved.

5.2.12 Target Detection and Laser Pointing

Should the robot detect a scene match, the next goal is to detect the target object within the
scene and to mark it with a laser pointer. To this end, we used the find object 2d module
of ROS to perform a similar algorithm as we did in the scene matching stage [20]. Using
the color video feeds from the stereo camera, this algorithm enables us to detect the object
and also determine the spatial position of the detected object.

It outputs the homography transformations between the detected object and the image
plane which enables us to find the position of the target center. This matrix includes
information about the position of the object in the given scene. Using this, we are able to
find the coordinates of the center point of the object. Furthermore, we know the resolution
of the video feed from ZED2 (1280x720 pixels). Since the laser pointer is located very close
to the stereo camera (and at the same altitude), the (x, y) coordinates of the object center
are sufficient to calculate the angle between the laser pointing mount and the object. We
need two angles that correspond to pitch and yaw, and we find them by taking the inverse
tangent of the ratios y/720 and x/1280 respectively. This approximation assumes that the
object is at a close distance but considering that we do not detect the objects at long
distances, it is sufficient.

5 Methods and Implementation Details 39

In order to mark the target, we used a pan tilt mount that aims a laser pointer at the
detected target. Using a 2-axis motion structure, we are able to control the laser pointer
and aim at the target with sufficient precision. The angle information is send to Arduino
Mega via serial communication along with the information of weather the target is found.
When the target is found the microcontroller lights the LED on the side of the robot and the
points the laser to the target by controlling the servo motors in the pan tilt mount according
the angle information provided.

Figure 28: Two-axis pan-tilt laser mount.

a) Progress between CM2 and CM3: We installed the required libraries into our Jetson
board and tried running initial tests.

b) Progress between CM3 and CM4: We mounted the pan tilt kit near the camera where
the processed image is taken so that the angle information is similar for in both the image
and the laser.We established communication between the board and the laser pointer. We
mode the necessary connections and succesfully implemented our design.

5.2.13 Possible Risks and Solutions

a) Point Cloud Fusion for SLAM: The stereo camera and LIDAR provide distinct point
clouds and these outputs are fused to perform simultaneous localization and mapping.
However, the point cloud data provided by LIDAR demonstrates sufficiently accurate per-
formance for determining the depth of the objects in its surrounding. For this reason, the
benefit-to-cost ratio of using fused point cloud data is quite low.

b) Jetson Performance Issues: The performance issues of the Jetson TX2 module are
considered while running the algorithms and performing experiments. However, since
all of the demanding tasks have not been loaded yet and deployed simultaneously, it is
not clear whether a single Jetson TX2 GPU is adequate to fulfill the time and performance
constraints. In the case of inadequacies, our solutions are lowering the point cloud data rate
of the sensors, downsampling the point clouds, and lowering the segmentation resolution.

6 Results, Discussions, and Further Directions 40

c) The Overlapping Goals of Segmentation and SLAM: The most crucial algorithms are
road segmentation and SLAM while performing motion planning. Road segmentation is
crucial for determining the obstacles and making a decision to avoid them. However, the
SLAM algorithm also considers the obstacles and plans motion accordingly. Therefore, it is
not clear whether we can get the maximum benefit from these two algorithms when they
are utilized together. Furthermore, the computational cost of the segmentation algorithm
overweights the benefits of utilizing segmentation and SLAM simultaneously. Therefore,
we have forgone the segmentation in favor of computational efficiency, even though we
have previously implemented the core of the segmentation algorithms.

6 Results, Discussions, and Further Directions

6.1 Results

We have successfully built an autonomous robot equipped with a LIDAR, a stereo camera,
and an INS module which can navigate and explore an unknown location and locate and
point to a predetermined target. Our autonomous robot satisfies most of the determined
functional requirements. Firstly, our autonomous robot does not perform data synchroniza-
tion which means that it does not fuse the data streams obtained from the LIDAR and the
stereo camera in order to perform SLAM. There are two reasons for not fusing the two point
clouds: the fusion of two point clouds is computationally costly and the point cloud data
obtained from the LIDAR demonstrates sufficient performance in determining the depth of
the objects in its environment. As the cost of fusing the two point clouds is more than its
benefits, we only used the point cloud data obtained from the LIDAR.

Secondly, our autonomous robot performs spatial mapping by integrating the data gath-
ered from the LIDAR with SLAM algorithms. The speed of updating the map was given to
be 10 updates per second in the functional requirements but our system can update 1 map
per second due to the performance issues of the Jetson TX2 module. This was the main rea-
son of the problems that we had encountered in the exploration stage. Thirdly, our robot is
completely autonomous in data acquisition, navigation, exploration, and decision-making
based on the environment. It decides its next maneuver based on the surrounding paths
and obstacles through SLAM, path planning, and exploration algorithms. Although we im-
plemented segmentation, we decided not to use it in motion planning because the SLAM
algorithm also considers the obstacles and plans motion accordingly. Hence, the computa-
tional cost of the segmentation algorithm overweighs the benefits of utilizing segmentation
and SLAM simultaneously. In order to assess their performance, we have constructed a
maze in the EEE building and tested our robot there. Our robot can successfully generate
the map of the maze as given in Figure 29.

6 Results, Discussions, and Further Directions 41

Figure 29: The map of the constructed maze.

Next, mobility is provided by the motors powered with batteries and the maneuvering
ability is provided by the wheels. The microcontroller is able to generate PWM signals at
various rates in order to maintain the requested wheel speed using a closed feedback loop.

Finally, our autonomous robot can locate a predetermined target by using scene match-
ing and target detection algorithms and can point a laser to the target once it is found. In
the case of a target detection, the robot stops exploration and keeps pointing at the target
object as long as the target is visible. If the target becomes invisible or undetectable, the
robot continues exploring to find the target again. An illustration of our robot pointing the
target with a laser is shown in Figure 30.

Figure 30: An illustration of the robot pointing the target with a laser.

Our autonomous robot satisfies most of the non-functional requirements. Firstly, its de-
sign and operation follows the OSHA 29 CFR 1910.333 [7] standards for industrial robots
and robot system safety. Secondly, it successfully navigates and explores indoor locations

6 Results, Discussions, and Further Directions 42

as given in the non-functional requirements. Thirdly, the modular design of our robot al-
lows us to arrange the sensors and components according to our needs. Finally, we try to
optimize the power consumption of our robot by supplying the LIDAR and the Jetson TX2
board with Li-Po batteries and the motors with lead-acid batteries.

6.2 Discussions

The project goals were fully attained since we were able to construct an autonomous robot
which can navigate an unknown environment and locate a predetermined target. Overall,
we were succesful in integrating separate algorithms and optimizing their operation but
there were also some problems. Firstly, we spent more than half of the first semester for
implementing point cloud fusion and segmentation but we realized that they are actually
not needed in the second semester. We found out that performing point cloud fusion leads
to more problems than benefits and that the point cloud data obtained from the LIDAR is
sufficient for utilizing in the SLAM algorithm. We also found out that the SLAM algorithm
works similar to segmentation in the sense that both algorithms consider the obstacles and
plan motion accordingly. Therefore, we decided to use only the SLAM algorithm because
utilizing them simultaneously does not result in any performance improvements. We could
have done more research about these algorithms and performed multiple trials before fully
implementing them in order to save time and effort. Hence, we advise others who might
be involved in similar projects to do more research about the possible algorithms and pick
the most optimal ones before starting to implement them.

Secondly, we changed the batteries and motors multiple times in order to reach the most
optimal power consumption because it is hard to anticipate the possible power consump-
tion of the robot without finishing all tasks and testing it in a realistic setting. Moreover, a
single Jetson TX2 board is merely adequate in fulfilling the time and performance require-
ments. We did not have time to buy a second board but we advise others who might be
involved in similar projects to consider using two boards in order to prevent any unfore-
seen performance limitations. Thirdly, it is important to determine the main work packages
and divide them among the group members in the initial stages of the project in order to
progress steadily. Implementing the required algorithms separately and then integrating
them into a full-blown system is an effective idea with only one downside: it is not possible
to determine the performance of the board and power consumption of the robot without
loading all tasks. However, this problem can be avoided by having a modular design which
allows the designers to add components and change the locations of sensors.

6.3 Future Directions

We have identified three possible future directions. Firstly, our robot is designed and con-
structed to operate only in indoor environments. Hence, a possible extension of the project
can be making the robot operate in outdoor environments by utilizing the GPS data ob-
tained from the INS module. We think that using the GPS data can improve the perfor-
mance of the path planning and exploration algorithms. Secondly, our robot is trained to
locate and point to a single target in a given scene but there are generally multiple targets
in more realistic scenarios. Hence, a possible extension of the project can be training the

7 Detailed Equipment List 43

robot to locate and point to multiple targets in multiple scenes. Finally, we tried to optimize
the power consumption of our robot by utilizing both Li-Po and lead-acid batteries but it
can further be optimized by considering different alternatives. Hence, a possible extension
of the project can be constructing a robot with more efficient power usage.

7 Detailed Equipment List

The set of equipment which includes sensors, computing board, and miscellaneous parts
that have been borrowed or purchased are listed together with their prices in Table 1. The
sensors and the computing board are borrowed from the company. Peripherals required to
control the board, such as the keyboard are borrowed from the senior year project lab. After
Committee Meeting 1, motors, wheels, and motor controller circuits have been purchased.
Considering the size of these components, chassis parts are also purchased during the
semester break. Overall, the total cost of the project is below the project’s budget. The
estimated costs of the parts which were not yet purchased are also listed in the table.

The Equipment Name Cost Acquired from

Velodyne VLP-16 LIDAR Borrowed (4000 $) Roketsan

ZED2 Stereo Camera 600 $ Purchased

XSens MTI-7-DK INS 400 C Purchased

Jetson TX2 Module Board Borrowed (400 $) Roketsan

Arduino MEGA 20 $ Purchased

Monitor, keyboard, mouse Borrowed EEE 493 Lab

USB 3.0 Hub Borrowed (40 $) Roketsan

Motors and wheels 70 $ Purchased

Chassis parts 60 $ Purchased

Batteries and distribution transformers 300 $ Purchased

Laser Mount and Laser 25 $ Purchased

Table 1: List of Equipment and Prices

References 44

References

[1] A. Mishra and S. Kumari, “Military robots play a pivotal role as a tactical and opera-
tional tool for armed forces,” May 2018.

[2] R. Bergholz, K. Timm, and H. Weisser, “Autonomous vehicle arrangement and method
for controlling an autonomous vehicle,” United States Patent and Trademark Office,
no. US6151539A, 1998.

[3] D. W. Strelow and A. B. Touchberry, “Method and system for autonomous vehicle
navigation,” United States Patent and Trademark Office, no. US7840352B2, 2006.

[4] “Boston dynamics.” [Online] Available at https://www.bostondynamics.com/.

[5] C. Stieg, “This $75,000 boston dynamics robot ’dog’ is for sale-take a look,” Jun 2020.

[6] “Slam robot.” [Online] Available at https://www.pantechsolutions.net/
slam-robot.

[7] “Industrial robots and robot system safety,” Occupational Safety and Health Adminis-
tration, 1992. [Online] Available at https://www.osha.gov/dts/osta/otm/otm_iv/
otm_iv_4.html.

[8] A. Armea, “Calculating a depth map from a stereo camera with opencv.” [Online]
Available at https://albertarmea.com/post/opencv-stereo-camera/, Oct 2017.

[9] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr:
Calibrating the extrinsics of multiple imus and of individual axes,” in 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 4304–4311, 2016.

[10] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” IEEE International
Conference on Robotics and Automation (ICRA), pp. 3400–3407, 2011.

[11] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna, “LiDAR-Camera Calibra-
tion using 3D-3D Point correspondences,” ArXiv e-prints, May 2017.

[12] “Point cloud library,” ROS. [Online] Available at http://wiki.ros.org/pcl_ros.

[13] “Parallel point cloud registration.” [Online] Available at https://hanzhoulu.
github.io/Parallel-Point-Cloud-Registration/.

[14] G. Grisetti, C. Stachniss, and W. Burgard, “Openslam.org,” 2020.

[15] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,” in
Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
pp. 2432–2437, 2005.

[16] “pointcloud to laserscan.” [Online] Available at http://wiki.ros.org/pointcloud_
to_laserscan.

[17] “Feature detection and description,” OpenCV. [Online] Available at https://docs.
opencv.org/master/db/d27/tutorial_py_table_of_contents_feature2d.html.

https://www.bostondynamics.com/
https://www.pantechsolutions.net/slam-robot
https://www.pantechsolutions.net/slam-robot
https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html
https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html
https://albertarmea.com/post/opencv-stereo-camera/
http://wiki.ros.org/pcl_ros
https://hanzhoulu.github.io/Parallel-Point-Cloud-Registration/
https://hanzhoulu.github.io/Parallel-Point-Cloud-Registration/
http://wiki.ros.org/pointcloud_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan
https://docs.opencv.org/master/db/d27/tutorial_py_table_of_contents_feature2d.html
https://docs.opencv.org/master/db/d27/tutorial_py_table_of_contents_feature2d.html

References 45

[18] “move base.” [Online] Available at http://wiki.ros.org/move_base.

[19] J. Hörner, “Map-merging for multi-robot system,” 2016.

[20] “find object 2d.” [Online] Available at http://wiki.ros.org/find_object_2d.

http://wiki.ros.org/move_base
http://wiki.ros.org/find_object_2d

46

Appendices

Figure 1: The block diagram of the project.

47

Figure 2: The timeline of the project.

48

Figure 3: The current state of the project.

	Company Information
	Motivation and Novelty
	Requirements
	Functional Requirements
	Non-Functional Requirements/Constraints

	Big Picture
	Methods and Implementation Details
	Work Breakdown Structure and Project Plan
	Methods and Progress
	Current State
	Data Acquisition from INS
	Data Acquisition from Stereo Camera and Its Calibration with INS
	Data Acquisition from LIDAR and Its Calibration with Stereo Camera
	Point Cloud Fusion (PCF)
	Segmentation
	Odometry
	Simultaneous Localization and Mapping (SLAM)
	Scene Matching
	Building and Remote Controlling the Robot
	Path Planning and Exploration
	Target Detection and Laser Pointing
	Possible Risks and Solutions

	Results, Discussions, and Further Directions
	Results
	Discussions
	Future Directions

	Detailed Equipment List
	Appendices

